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The Effect of Selection on the Standardized Variance

of Gene Frequency

F.W. Nicholas and A. Robertson
Institute of Animal Genetics, Edinburgh (Scotland)

Summary. The effect of directional and heterotic selection on the standardized variance of gene frequency
(f = 02/q(1-F)) has been examined. It has been found that heterotic selection always results in { values
lower than those expected due to drift alone. Additive directional selection can result in low f values, but
values larger than those expected due to drift will be observed under additive selection with low initial gene
frequency, or when the populations have been separated for a very long period of time in which case  ex-
pected due to drift is quite high (around 0.7 or greater). The effect of selection on f is unlikely to be de-

tected if the observed value of f is less than 0.1.

Introduction

The relative importance of selection and random drift
in determining the observed pattern of evolution is
still a major topic of debate in population genetics.
For loci at which gene frequency can be determined,
one of the lines of study currently being followed is
based on an idea apparently first suggested by Caval-
li-Sforza (1966), in which the standardized variance
of gene frequency of f = oé/&h - q) is estimated for
various loci over several populations. Thus f is esti-
mated from the mean gene frequency at a particular
locus over several populations (q), and the variance
of the gene frequency distribution (OCZI) over the same
populations, at a particular point in time. Since all
loci in a given group of populations have been sub-
jected to exactly the same breeding structure, f val-
ues obtained from any number of such loci will be
homogeneous unless selection has been acting at some
of the loci. Lewontin and Krakauer (1973) have re-
cently developed various statistical tests for the ho-
mogeneity of f values, though these can be shown to
be invalid if the populations within a species have a
hierarchical structure (Robertson 1975).

Many of these authors have drawn some conclu-
sions as to the type of selection which is acting. Thus
it has been argued that f values lower than those ex-
pected due to drift alone could be due to some form
of stabilizing selection (e.g. heterozygote superiori-
ty), and relatively large f values may be indicative
of different strengths of directional selection at the
same locus in different populations. But these gen-

eralisations are the only knowledge currently avail-

able: what is lacking is a proper understanding of the
way various models of selection affect the standard-

ized variance of gene frequency.

It is not only natural populations which are being
subjected to this type of study. The advent of suitable
electrophoretic techniques has recently led to studies
of the effect of selection on gene frequency and the
variance of gene frequency at polymorphic loci in la-
boratory populations of mice (Garnett and Falconer
1975). The latter study was concerned solely with the
effect of artificial selection for a metric character
on gene frequency and variance of gene frequency at
various 'electrophoretic' and coat colour loci. A bet-
ter knowledge of the way in which selection affects
the & standardized variance of gene frequency would
assist in the interpretation of such artificial selec-
tion experiments.

In attempting to trace the history of human evolu-
tion, Cavalli-Sforza (1969) developed an algebraic
relationship between f and the time (t) since separa-
tion of two populations, for a model of constant but
different directional selective values in different pop-
ulations at the same locus and compared it to the re-

lationship f = l—e_t/ZN

expected in the absence of se-
lection. These two relationships were then used to ob-
tain lower and upper limits respectively of t, the
time since divergence. But other models of selection
would give completely different relationships between
f and t and hence completely different estimates of
time since divergence. Once again, therefore, a great-
er understanding of the effect of selection on f would
be useful.
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For human populations, Cavalli-Sforza and Zei
(1967) and Bodmer and Cavalli-Sforza {1968) have
obtained the expected value of f for more complex
but more realistic models using the Monte-Carlo and
migration matrix methods respectively, on a comput-
er. Expected values of f so obtained for situations
where sufficient migration and general demographic
data are available have been compared with observed
f values. But itis difficult to use these methods to de-
termine the effect of selection on f in general terms,
as so many parameters of migration and/or demogra-
phy are required to obtain any specific answer. The
cost in computer time is also quite substantial.

As will be shown below, it is impossible to obtain
any useful results from algebra alone. An understand-
ing can only be acquired by the use of a transition
probability matrix with which it is possible to calcu-
late the expected value of 02 and g and hence f at
any time under various models of selection.

The aim of this study is to obtain a greater insight
into the behaviour of the standardized variance of gene

frequency under simple models of selection.

The Additive Model

Consider a single locus with alleles A, and A, and

relative fitnesses of the genotypes Az.lbxz, AlAi and
AA 1-s/2, 1 and 1+s/2 respectively. If, in a

single population, the genotypes are in Hardy-Wein-
berg equilibrium, then the frequency after selection

dys is given by

qy = q+sqll-q)/2

In a finite population, the frequency will also vary
because of genetic sampling. We can then only useful -
ly discuss the behaviour of a set of replicate lines with
the same effective number of parents N, and selection
pressures. If the variance of q over populations is V,

then the standardized variance, f, is given by

f = V/g(1 - q) where q is the mean frequency.

With no selection, the expected value of f will in-
crease by an amount (1-1)/2N each generation. But
selection too will cause a change in f. Putting
q = g + 8q and using subscripts for the values after

selection, we have

qq = q+ sqU1-3)/2 + sq(1+s(1-23)/2) - s(sq)?/2
= g+s(3(1-3)-V)/2+8q(1+s(1-23)/2) -s((69)*-V) /2

=, + sal1+s(1-23)/2) - s((sq)?-V)/2 .
Thus the variance after selection, V1, is given by

\%

1 E((éq)2(1+8(1-2c_1))—s(éq)3+ terms in sz)

1l

V(1+s(1-2q)) - Skig» where by is the third

moment about the mean.

Thus the effect of selection on the variance is depend-
ent onthe third moment - see Crow andKimura (1970),
p- 239.

The matrix operations

The derivation and subsequent use of a suitable matrix
have been described in full, for example, by Hill and
Robertson (1968). Only a brief description, there-
fore, of the matrix operations will be given here.
Consider a population of N diploid individuals mat-
ing at random (including selfing). At a particular
1 and AZ’
are assumed to have Hardy-
)2

single locus with two alleles A

A2A2, A1A2 and A1A1

Weinberg frequencies of (1-q

the genotypes

, 2q{1-q) and q2 re~
spectively at conception, where ¢ is the frequency of
allele A

1
three genotypes are assumed to be S

at conception. The relative fitnesses of these
59 1 and S 11
respectively.

For a given gene frequency i/2N, the proportion
g; of each genotype in the population of parents at the

time of their mating is

1
8ipp = = (1-a)7 Sy,
w
1
8i15 = =2a(1-q)
w
1 2.
811~ =9 511
w

where g = 1/2N and W is the proportion of zygotes

which remain to be included as parents, and is given

by

— 2
w = (1—q)2522 +2q{i-q) + q 511 .

The probability of obtaining exactly x A_A ),

2 2
y A A, and z A A, genotypes (x+y+z=N) in a popu-

1
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lation of N survivors, given that there were i A1
alleles in the population of zygotes in the same gen-

eration can be expressed as
_ (N X y b4
£;(x,y.2) = (xyz) €io2 112 8i11 »

and can easily be evaluated on a computer for all
i=0,1,...,2N. It then follows that the probability
pij of obtaining j A1 alleles in a population of N zy-
gotes at generation t+ 1, given that there were i A1
alleles in the N zygotes at generation t is

£(x,y,2) i,j=0,1,...,2N,

ij
2Z+y=j
which is an element of the transition probability ma-

trix P. The matriiI is square of dimension 2N +1, and
2
within each row jgo pij =1. ,
The expected value of g and ¢ can then be ob-
tained by post multiplication of P by column vectors
representing the first and second moments about zero
of the distribution of gene frequency. Thus the selec-
tion process is commenced by setting up a column
vector up with elements u; = 1/2N and a second vec-
tor v with elements v, = i/2N X i/2N. Then the ma-

trix operations

u, = Pu0
and
vy = on

result in vectors u, and v, representing the first

1
and second moments after one generation of selec-
tion. The results for subsequent generations are then

obtained as

u, = Pu1

and

u, = Put_1 (a)
= P'uy (b)

and similarly for v. While operations of the form of
(b) indicate more clearly the principle of the use of
a transition probability matrix, it is operations of

the type shown in (a) which are actually carried out,
because they involve only the repeated multiplication
of the matrix by a vector, rather than the matrix by

the matrix as is needed in (b).

At any generation t, the ith element of u, repre-

t

element of v, is

sents E[qtho = i/ZN], and the '8 f

equivalent to E [qflqo = i/ZN]. Thus

2 i 2
E[Gq!qo = .ZI—N] = Vi) " B

and
2
B N vt()—[ut():]
E[flqo - Elﬁ] = ut(;) [1—ut(li)_r

Matrix operations of the type shown above have
been carried out with a diploid population size of
N = 10, for a total of t = 8N generations, with var-
ious strengths of selection under two simple models,
additive and heterotic. The final generation was cho-
sen as 8N simply because it represents a convenient
multiple of N, and corresponds to almost all (in this
case 98.2%) of the inbreeding process for a locus
with neutral alleles. Extrapolation from t = 8N to
t ==o for the parameter f is a relatively easy matter,
as E[f]at t = 20 is 1.

An effective population size of N = 10 was chosen
because it represents a convenient value for matrix
operations. [t is now commonly realised (see for ex-
ample, Crow and Kimura 1970) that generalisations
to a wide range of population sizes can be made by
expressing the results obtained from one value of N
as functions of Ns for the additive model, and of
N(s1

selection coefficient for additive selection, and s

+ 52) for the heterotic model, where s is the

1

and s, are the selection coefficients for heterotic

2
selection. Thus the two models can be represented as

A2A2 A1A2 AlAl
Relative) 1 . R 1 additive
fitness) - 25 1 Pl 2 ° model
1- Sy 1 1-s heterotic
2
model

[t follows that the transition probability matrix P can
93 = 1-s/2 and Si1° 1+s/2 for
the additive model, and S and S

be set up by taking S

227 18, 11 =175

for the heterotic model.

The effect of selection on f

An example of the behaviour of f under additive selec-
tion in a finite population is given in Fig.1, in which

f is shown as a function of mean gene frequency at
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Fig.1. The relationship between standardized vari-
ance of gene frequency and mean gene frequency with
additive selection with different initial frequencies,
drawn from transition probability matrix results

time 1, for the four initial gene Irequencies of dq =
0.1, 0.3, 0.5 and 0.7. Thus a conceptually infinite
population has been subdivided randomly at time t=0
into several subpopulations each of effective size N.
The value of 9 is the same in all subpopulations,
giving fO = 0. Additive directional selection then oc-
curs with exactly the same coefficient of selection in
all subpopulations: the variance of s is zero. The ex-
act matrix results represent the mean value of f
which would be observed if the whole process of sub-
division followed by selection within subpopulations
were repeated a large number of times.

It will be seen that f is linear with g over quite a
large range for all cases. The initial slope of the curve
can be obtained easily since, when f = 0, we have for

the change in the first generation,

A = 1/2N

sq(1-q)/2

Aq

so that df/dq = 1/Nsq(1-q).

Another illustration of the way in which f behaves
under different strengths of selection for the additive
model is given in Fig.2. The results for the heterotic
model are also included. The time scale on the x-axis
. -t/2N
is expressed as 1-e
line relationship between f and t in the absence of

so as to provide a straight
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Fig.2. The effect of additive selection and heterotic
selection on the standardized variance of gene fre-

quency 0.1. Time is expressed as 1-e~%¥2N | to pro-
vide a linear relationship with f with no selection

selection. All the curves in Fig.2 have been obtained
for the same initial frequency of allele Al’ namely

q = 0.1: results for other initial gene frequencies will
be discussed below. In addition, for the heterotic mod-
el, it has been assumed that qq = d, where q is the
large population equilibrium gene frequency, and is
given by SZ/(Sl + sz) . This assumption is probably
quite a valid description of the situation in real life,
because t = 0 in the context of this study represents
the time of divergence or separation of one relatively
large population into two or more relatively smaller
ones. If selection were favouring the heterozygote at
a particular locus, then it would not be surprising to
find q = q in the large population, and hence for any
newly formed subpopulation the assumption that
E[qO] = q would seem to be quite realistic.

It can be seen from Fig.2 that with low initial fre-
quencies, at any time t additive selection results in
f values larger than that expected due to drift alone,
and that heterotic selection has the opposite effect.
The difference between f under selection and f under
drift alone at any time t increases as the values of
Ns or N(s1 + 52) increase. More generally, it has
been found that the shape and position of the curves
for heterotic selection are very similar for all initial
gene frequencies if the initial frequency is the equi-

librium value. The effects of heterozygote advantage
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Fig.3. The effect of additive selection on f for initial frequencies of 0.3 and 0.5, with time expressed as
1_e—t/2N
are thus well in accord with the verbal predictions of rewritten
Cavalli-Sforza (1966, 1969) and Lewontin and Krakau- _
AV = s[V(1-23) - u,2 (2)

er (1973).

This apparent independence of f of the equilibrium
value of q with heterozygote advantage hides very dif-
ferent behaviour at the different frequencies. When
dg = 0.5, then the mean frequency does not change and
the lower f values are due to a true reduction in het-
erozygosity. But, when dg = 0.1, heterotic selection
does not retard the absolute loss of heterozygosity,
it increases it (Robertson 1962). But the mean fre-
quency changes so that the poorer allele is almost
always lost from the population. Apparently the de-
cline of the variance is more rapid than that of (i,
giving rise to reduced f values.

The effect of additive selection, however, is not
so easily generalised. For higher initial gene frequen-
cies, in this case 0.3 and 0.5, Fig.3 shows the ef-
fect of various values of Ns on f. It can be seen that
f under selection is almost the same as or less than
i with drift alone for the majority of the selection
process. In fact with qp = 0.5 the curves for additive
selection now resemble the curves for heterotic selec-
tion, except for relatively high values of f, of the or-
der of 0.8 or more.

An explanation of the behaviour of £ with additive

selection can be obtained from Eq.(1), which may be

whereas for the change in q(i-q), we have
a(qf1-q)) = (1-29)aq = sq(1-q) (1-2q)(1-f)/2
that we have

SO

V(1+s(1—2c—1)—p3/V)

a(1-q) (1+s(1-2q) (1-£)/2)

f(1+s[(1-2c—{)(1+f)/2-;J,B/V]) approx.

Further, it can be shown that if s is small, then

V = q(1-q)f whereas u, = 3 §(1-3) (1-23) (3t°-£°).
Thus, in the early stages of selection, the second
term in 2) will be smaller than the first and the ef-
fect of selection on f will depend on (1-2&).

Thus the deviation of f from the expected values
without selection depends on the initial gene frequen-
cy. If this is low, the effect of selection is to increase
f above expectation in the early stages and to maintain
this throughout, as illustrated in Fig.2 for 9y = 0.1.
When dg = 0.3, both terms in 2) are small when f is
small and when Ns = 8, f remains close to expecta-
tion as the gene frequency passes through the range
close to q = 0.5 where selection has little effect on f.
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When dq = 0.5, on the other hand, selection at the
higher values of Ns quickly moves the frequency out
of the central range and f values are below theoreti-
cal expectation. At very high values of the mean gene
frequency, usually higher than 0.95, f suddenly in-
creases until, as fixation is approached, it is greater
than theoretical values. A piot of loge(l—f) against

t (which in the absence of selection would have slope
1/2N) shows that this final acceleration occurs at all
values of qq- It is a consequence of the fact that the
limiting rate of loss of heterozygosity increases as
Ns increases (see Kimura 1955).

The computer output alsc included the value of the
third moment of gene frequency about the mean. This
was usually positive when q was less than 0.5 and
vice versa though the change in sign did not occur
exactly at q = 0.5. Thus the two terms in 2) are usu-
ally opposite in sign. The first was usually the larger
though when dg = 0.1, the two terms were approxi-
mately equal for q values greater than 0.6.

It can be concluded that heterotic selection always
results in f values lower than those expected with
drift in the absence of selection. Additive directional
selection will produce similarly low values of f un-
less initial gene frequency is low, or unless observa-
tions are made relatively late in the selection process,
when f values expected due to drift alone are of the
order of 0.7 or greater. In these two situations f
with selection is greater than f with drift alone. It is
further evident that even with quite large values of Ns

or N(s, + 52)’ the effect of selection on f will never

1
be detected if the observed value of f is less than say
0.1. The effect of selection on f becomes most appar-

ent as f due to drift approaches intermediate values.

Discussion

The results of this study are in broad agreement with
verbal predictions already available of the effect of

selection on the standardized variance of gene fre-
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quency. What has become evident, however, is the
way in which two simple models of selection are suf-
ficient to provide expected values of f which cover al-
most the entire possible range of f values. Further-
more, the possible range of f values at any particu-
lar time t can be substantially extended when consid-
eration (not described here) is given to directional
selection for a recessive, and for a dominant gene. [t
must therefore be concluded that while heterogeneous
f values certainly can be taken as evidence of selec-
tion, any subsequent inference as to the type of se-
lection operating is bound to be of very limited vali-
dity in the absence of knowledge of initial gene fre-

quencies.
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